An efficient synthesis of new fused 1,2,4-triazines as potential antimicrobial and anticancer agents

Ibrahim M. El-Deen ${ }^{1}$, Jehan A. Hasanen ${ }^{2}$ and Ahmed M. Hefny ${ }^{2}$
${ }^{1}$ Chemistry department, faculty of science, Port-Said University, Port-Said, Egypt, postal code 42526
${ }^{2}$ Chemistry department, faculty of science, Suez Canal University, Ismailia, Egypt, postal code 41522

Keywords; 1,2,4-triazine; synthesis; thiosemicarbazide; heterocyclic; antimicrobial; anticancer

Abstract

The objective of this work is synthesis of some fused 1,2,4-triazine derivatives and study the fields of applications for the synthesized compounds (their antimicrobial and anticancer activities). Methods; new series of fused 1,2,4-triazine derivatives (4,5 and 7) were prepared via the cyclization of 5-substituted-3-phenyl-2-(amino)thiocarbonyl-1,2,4-triazine -6- one (3) with acetic anhydride, phenacyl bromide and ethyl choloroacetate under reflux. Condensation of 7 with aromatic aldehydes yielded the corresponding arylidene derivatives $\left(\mathbf{1 0}_{\mathrm{a}, \mathrm{b}}\right)$. Acetylation of compounds $\mathbf{5}, \mathbf{7}$ and $\mathbf{1 0}_{\mathrm{a}, \mathrm{b}}$ with acetic anhydride afforded the formation of N -acetyl derivatives ($\mathbf{6}, \mathbf{8}$ and $\mathbf{1 1}_{\mathrm{a}, \mathrm{b}}$) 1,5-diphenyl-3-acetyl-4-thioxo-7-(3,4,5-trimethoxybenzylidene)-triazino[2,1-a]-1,2,4-triazine-8-one(6),3-acetyl-4-thioxo-5-phenyl-7-(3,4,5-trimethoxy benzylidene) -triazino[2,1-a]-1,2,4-triazine-1,8-dione (8) and 2,7-di(arylidene)-4-thioxo-5-phenyl-7-(3,4,5-trimethoxy benzylidene)-triazino [2,1-a]-1,2,4-triazine-1,8-dione (11 $\mathbf{a b}_{\mathrm{a}, \mathrm{b}}$), respectively. Acetylation of $\mathbf{7}$ with acetic anhydride in the presence of fused sodium acetate gives diacetyl derivative $\mathbf{9}$. The structures of the prepared compounds were confirmed by IR, ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}, \mathrm{MS}$ and elemental analysis. Key findings; Some compounds selected as potential agents hepatocellular carcinoma (HCC) were then evaluated in vitro for their biological activity on HCC-derived cell lines (the compounds show a promising inhibitory growth efficacy with compared standard anticancer drugs).In conclusion, some fused 1,2,4-triazine derivatives might be potentially useful in the field of cancer treatment, finally compounds $\mathbf{3}, \mathbf{7}, \mathbf{9}$, and $\mathbf{1 1}_{\mathrm{a}, \mathrm{b}}$ can be suggested as potent candidates for liver cancer treatment

Introduction

Triazine derivatives have occupied a unique position in medicinal chemistry. Triazine derivatives have attracted considerable pharmaceutical interest due to their antitumor [1-5], anticonvulsant [6] and antileukemic [7, 8] activities and cytotoxic effects [9]

Triazine has been used to form many types of functional groups other than amines and heterocycles and used as protecting groups in natural product synthesis. Thus, they are reactive groups, which are adaptable to different synthetic transformations.
$1,2,4$-Triazines play a vital role in many biological processes and as synthetic drugs. Furthermore, many heterocyclic systems bearing 1,2,4-triazines are found to exhibit remarkable pharmacological effects such as antimicrobial, antifungal, antibacterial, anticancer, anti-HIV, anti-inflammatory, anti-tuberculosis, antimalarial, etc [10-18].
Nitrogen containing heterocyclics have attracted huge interest over the past decades because of their diverse pharmacological activities, including protein kinase inhabitation. Being involved in nearly all aspects of life at the cellular level, protein kinase have become the most important targets of drugs for various indications, such as cancers and inflammations [18-23].
Herein we describe the synthesis and in vitro biological activity of fused 1, 2, 4-triazine derivatives. The new compounds were screened for antimicrobial and anticancer activates and some of them were found active both in vitro.

1. Experimental section

1.1. Chemistry

The Melting points were determined in capillaries with a MEL-TEMP II laboratory apparatus, USA, and uncorrected. The infra-red spectrum was recorded on a Perkin-Elmer 337 spectrophotometer KBr wafers. Proton and carbon NMR spectra were recorded on a BRUKER EM 360 spectrometer using solution in hexadeuteriodimethyl sulfoxide with tetramethylsilane as the internal standard. Mass spectra was recorded on VG AUTSPEC GEIFAB and a Hewlett-Packard MS Engine Thermospray and ionization by electron impact to 70 eV , the accelerating voltage was 6 KV , the temperature of the ion source was $\sim 200^{\circ} \mathrm{C}$, and the emission current $\sim 100 \mathrm{~mA}$. Microanalyses were conducted using a PERKIN-ELMER 2408 CHN analyzer.

1.1.1 General experimental procedure for the synthesis of triazines

The synthesis pathway leading to the title compounds is outlined in scheme 1 and 2. 5-(3,4,5-Trimethoxy benzylidene-2-phenyl-3,1-oxazol-4-one (2) was prepared via the condensation of N -benzoyl glycine (1) with 3,4,5-trimethoxy benzaldehyde in the presence of fused sodium acetate and acetic anhydride under fusion.

The oxazolinone (2) is considered to be a useful starting material for further synthesis, thus compound 2 was treated with thiosemicarbazide in glacial acetic acid to give the corresponding 5- (3,4,5-trimethoxybenzylidene)-3-phenyl-2-(amino)thiocarbonyl-1,2,4-triazine-6-one (3). The structure of the novel compound 3 was confirmed by the spectral data.

Acetylation of 1,2,4-triazine-6-one derivative (3) with acetic anhydride under reflux led to the formation of 6-(3,4,5-trimethoxybenzylidene)-4- phenyl-3-thioxo-1-methyl-triazolo[2,1-a]-1,2,4-triazine-7-one (4). The structure of compound 4 was confirmed by the spectral data. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum shows a signal for three protons at $\delta, 2.44\left(\mathrm{CH}_{3}\right)$ ppm and two signals for three protons and six protons at $3.78,3.87 \mathrm{ppm}$ due to the three methoxy groups and also, multiplet at $7.30-8.11 \mathrm{ppm}$ due to aromatic ring $(8 \mathrm{H})$ and olefinic proton $(1 \mathrm{H})$. The mass spectrum of 4 shows molecular ion peak at $\mathrm{m} / \mathrm{z} 436$.

Cyclization of 5-(3,4,5-trimethoxybenzylidene)-3-phenyl-2-(amino) thiocarbonyl-1,2,4-triazine -6-one (3) either by phenylacyl bromide and ethyl choloroacetate in the presence of fused sodium acetate in acetic acid under reflux, furnished the novel fused triazino [2,1a]-1,2,4-triazine derivatives (5 and 7) .

The structures and purity of the newly synthesized fused triazino [2,1a]-1,2,4-triazine derivatives (5 and 7) were characterized by using ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectroscopy, HPLC-MS and elemental analysis.

Acetylation of compounds 5 and 7 with acetic anhydride under reflux affording 1,5-diphenyl-3- acetyl-4-thioxo-7-(3,4,5-trimethoxybenzylidene)-triazino[2,1-a]-1,2,4-triazine-8-one (6) and 3 - acetyl - 4- thioxo - 5 - phenyl - 7-(3,4,5trimethoxybenzylidene) - triazino[2,1-a] -1,2,4-triazine-1,8-dione (8), respectively.

2,3- Diacetyl - 4-thioxo -5- phenyl - 7 - (3,4,5-trimethoxybenzylidene) - triazino [2,1-a] - 1,2,4-triazine - 1,8 - dione (9) was obtained by Acetylation of compound 7 with acetic anhydride in the presence of fused sodium acetate.

2-Arylidene-4-thioxo-5-phenyl-7-(3,4,5-trimethoxybenzylidene)-triazino[2,1-a]-1,2,4-triazine-1,8-dione $\left(\mathbf{1 0}_{\mathbf{a}, \mathrm{b}}\right)$ were prepared by the fusion between compound 7 with aromatic aldehydes (such as benzaldehyde and anisaldehyde) using a catalytic amount of piperidine.

Boiling of compound 10 with acetic anhydride afforded the N - acetyl - 2,7-di (arylidene) - 4 - thioxo - 5 - phenyl - 7 -(3,4,5-trimethoxybenzylidene) - triazino [2,1-a] - 1,2,4 - triazine -1,8-dione ($\mathbf{1 1}_{\mathbf{a}, \mathbf{b}}$).

σ

Scheme 1: synthetic pathway for the preparation of 1,2,4-triazines (3-7)

8

7

10

11
a, $\mathrm{Ar}=$
 a, $\mathrm{R}=$

$\mathrm{b}, \mathrm{Ar}=$

$\mathrm{b}, \mathrm{R}=$

Scheme 2: synthetic pathway for the preparation of 1,2,4-triazines (8-11) from the novel fused triazino [2,1a]-1,2,4-triazine derivatives (7) .

5-(3,4,5-trimethoxy benzylidene)-2-phenyl-3,1-oxazol-4-one (2)

A mixture of N -benzoyl glycine (1, 0.01 mole), 3,4,5-trimethoxy benzaldehyde (0.01 mole), fused sodium acetate (0.03 mole) and acetic anhydride (5 ml) was fused on a hot plate for 2-3 min. The reaction mixture was heated on a water bath for 2 hr , and then was cooled and was poured on to ice water. The precipitate that formed was collected by filtration, was washed with hot water, was dried and purified by recrystalization with benzene to give $\mathbf{2}$ as yellow crystals.

5-(3,4,5-trimethoxybenzylidene)-3-phenyl-2-(amino)thiocarbonyl-1,2,4-triazine-6-one (3)

A mixture of oxazolinone ($2,0.01$ mole), thiosemicarbazide (0.01 mole) in acetic acid (30 ml) was heated under reflux for 4 hrs, and then the reaction mixture was cooled and poured into water. The solid product that formed was collected by filtration, was washed with hot water, was dried and purified by recrystalization from ethanol to give $\mathbf{3}$ as yellow crystals.

6 - (3,4,5-trimethoxybenzylidene)-4-phenyl-3-thioxo-1-methyl-triazolo[2,1-a]-1,2,4-triazine -7-one (4).

A solution of $3(0.01 \mathrm{~mole})$ in acetic anhydride (20 ml) was heated under reflux for 3 hr , then was cooled and poured into ice-water. The solid obtained was filtered off, was washed with water, was dried and was purified by recrystalization from benzene to give $\mathbf{4}$ as pale yellow crystals.

1,5-Diphenyl-4-thioxo-7-(3,4,5-trimethoxybenzylidene)-triazino[2,1-a]-1,2,4-triazine-8-one (5) 7-(3,4,5-trimethoxybenzylidene)-5-phenyl-4-thioxo-2,3-dihydro-triazino[2,1-a]-1,2,4-triazine-1,8-dione (7)

A mixture of 3 ($3,0.01 \mathrm{~mole}$) and phenacyl bromide and/or ethylchloroacetate (0.01 mole) in acetic acid (30 ml) in presence of fused sodium acetate (0.03 mole) was heated under reflux for 4 hrs . Then the reaction mixture was cooled and poured into water. The resulting solid was filtered off, was washed with water, was dried and was purified by recrystalization from a suitable solvent to give $\mathbf{5}$ and 7 . Compound $\mathbf{5}$ as pale yellow crystals and compound 7 as yellow crystals

1,5-Diphenyl-3-acetyl-4-thioxo-7-(3,4,5-trimethoxybenzylidene)-triazino[2,1-a]-1,2,4-triazine-8-one (6)
3-acetyl-4-thioxo-5-phenyl-7-(3,4,5-trimethoxybenzylidene)-triazino[2,1-a]-1,2,4-triazine-1,8-dione (8)
A solution of 5 and/or 7 (0.01 mole) in acetic anhydride (25 ml) was heated under reflux for 2 hrs. Then the reaction mixture was cooled and poured into ice water. The resulting solid was filtered off, was washed with water, was dried and purified by recrystalization from benzene to give $\mathbf{6}$ and $\mathbf{8}$. Compound $\mathbf{6}$ as pale yellow crystals and compound $\mathbf{8}$ as pale yellow crystals.

2,3-diacetyl-4-thioxo-5-phenyl-7-(3,4,5-trimethoxybenzylidene)-triazino[2,1-a]-1,2,4-triazine-1,8-dione (9)

A mixture of $7(0.01 \mathrm{~mole})$ and fused sodium acetate (0.03 mole) in acetic anhydride (25 ml) was heated under reflux for 3 hrs. Then the reaction mixture was cooled and poured into water. The solid formed was collected by filtration, was washed with water, was dried and purified by recrystalization from benzene to give $\mathbf{9}$ as pale yellow crystals.

2 - Arylidene-4-thioxo-5-phenyl-7-(3,4,5-trimethoxybenzylidene)-triazino[2,1-a]- 1,2,4-triazine-1,8-dione (10 ${ }_{\mathrm{a}, \mathrm{b}}$)

A mixture of 7 (0.01 mole), aromatic aldehydes (namely, benzaldehyde and anisaldehyde) (0.01 mole) and piperidine (1 ml) was fused for 1 hr at $130-140^{\circ} \mathrm{C}$. Then the reaction mixture was cooled and acidified with dilute hydrochloric acid (2%). The solid formed was collected by filtration, was washed with water, was dried and purified by recrystalization with ethanol to give $\mathbf{1 0}_{\mathbf{a}, \mathbf{b}}$.

2-Benzylidene-4-thioxo-5-phenyl-7-(3,4,5-trimethoxybenzylidene)-triazino[2,1-a]-1,2,4-triazine-1,8-dione (10 a) as yellow crystals.

2-(4-Methoxy)benzylidene-4-thioxo-5-phenyl-7-(3,4,5-trimethoxybenzylidene)-triazino[2,1-a]-1,2,4-triazine-1,8-dione (10 ${ }_{b}$) as yellow crystals.

2-Arylidene-3-acetyl-4-thioxo-5-phenyl-7-(3,4,5-trimethoxybenzylidene)-triazino [2,1-a]-1,2,4-triazine-1,8-diones (11 ${ }_{\mathrm{a}, \mathrm{b}}$).

A solution of $\mathbf{1 0}_{\mathbf{a}, \mathbf{b}}(0.01 \mathrm{~mole})$ in acetic anhydride (20 ml) was heated under reflux for 2 hrs . Then the reaction mixture was cooled and poured into ice-water. The solid formed was filtered off, was washed with water, was dried and purified by recrystalization from benzene to give $\mathbf{1 1}_{\mathbf{a}, \mathbf{b}}$

2-Benzylidene-3-acetyl-4-thioxo-5-phenyl-7-(3,4,5-trimethoxybenzylidene)-triazino[2,1-a]-1,2,4-triazine-1,8-diones (11 a) as pale yellow crystals.

2-(4-Methoxy)benzylidene-3-acetyl-4-thioxo-5-phenyl-7-(3,4,5-trimethoxybenzylidene)-triazino [2,1-a]-1,2,4-triazine-1,8diones ($\mathbf{1 1}_{b}$) as pale yellow crystals.

1.2. Biological screening

1.2.1. Antibacterial screening

The antibacterial activity of 1,2,4-triazine derivatives (3-11) were screened against Gram positive bacteria (Bacillus Subtilis, Streptococcus Pneumoniae and Staphylococcus aureus) and gram negative bacteria (such as E-Coli and Pseudomonas sp.) in DMSO by the well diffusion method using standard Mueller Hinton agar as the medium . The zone of inhibition was measured in mm, and was compared with standard drug. DMSO was used as a blank and Streptomycin was used as antibacterial drug standard [24, 25].

Sensitivity plates were inoculated with Gram positive and gram negative bacteria and the well was loaded with ($1 \mathrm{mg} / \mathrm{ml}$) of test compound solution using a micropipette. The incubation was done for 24 hrs at $37^{\circ} \mathrm{C}$. During this period, the test solution diffused zones of inhibition which were recorded using Vernier callipers; the radius of the zone is the measure of antibacterial activity.

1.2.2. Antifungal screening

The antifungal activity of 1,2,4-triazine derivatives (3-11) were evaluated by using the Sabouraud dextrose agar diffusion method Wells were made (8 mm diameter) with a sterile cork borer. To these wells $1 \mathrm{mg} / \mathrm{ml}$ of the test stock solution compounds were added and the plates were allowed to cool for an hour to facilitate the diffusion. The plates were then incubated at $37^{\circ} \mathrm{C}$ for 72 hrs. At the end of the incubation period, the diameter of inhibition around the wells was measured [26, 27].

1.2.3. Cytotoxic assay of 1,2,4-triazine derivatives

In this study, the antitumor activity of the 9 prepared fused triazines derivatives has been evaluated on human cancer cell lines, representing liver cancer. The cytotoxic activities of prepared compounds were tested against HepG-2 cell line according to method of Mosmann and Vijayan et al [28, 29]. The inhibitory activity against liver carcinoma cells (HepG-2 cell line) was detected by using different concentrations of the tested samples ($50,25,12.5,6.25,3.125$ and $1.56 \mu \mathrm{~g}$) and cell viability cell (\%) was determined by colorimetric method ,the data is summarized in table 6. The IC_{50} was calculated from table 6 and Figures 1, 2, 3 and 4.

1.2.3.1. Cell lines and culture

Human hepatocellular carcinoma (HepG-2) cells were obtained from the American type culture collection (ATCC, Rock Villa, and MD). The cells were grown on RPMI-1640 medium supplemented with 10% inactivated fetal calf serum and $50 \mu \mathrm{~g} / \mathrm{ml}$ gentamycin. The cells were maintained at $37^{\circ} \mathrm{C}$ in humidified atmosphere with $5 \% \mathrm{CO} 2$ and were subcultured two to three times a week.

1.2.3.2. Evaluation of the antitumor activity of 1,2,4-triazine derivatives

The antitumor activity was evaluated on HepG-2 cell. The cells were grown a monolayers in growth RPMI-1640 medium supplemented with 10% inactivated fetal calf serum and $50 \mu \mathrm{~g} / \mathrm{ml}$ gentamycin. The monolayers of 10000 cells adhered at the bottom of the wells in a 96 -well micro titer plate incubated for 24 hrs at $37^{\circ} \mathrm{C}$ in humidified atmosphere with $5 \% \mathrm{CO}$.the monolayers were then washed with sterile phosphate buffered saline (0.01 M pH 7.2) and simultaneously the cells were treated with $100 \mu \mathrm{l}$ from different dilutions of the test sample in fresh maintenance medium and incubated at $37^{\circ} \mathrm{C}$. A control of untreated cells was made in the absence of the test sample. Six wells were used for each concentration of the test sample. Every 24 hrs the observation under the inverted microscope was made. The number of the surviving cells was determined by staining the cells with crystal violet followed by cell lysine using 33 \% glacial acetic acid and read the absorbance at 490 nm using ELISA reader (Sun Rise, TECAN, Inc, USA) after well mixing. The absorbance values from untreated cells were considered as 100% proliferation. The number of viable cells was determined using ELISA reader as previously mentioned before and the percentage of viability was calculated as $[1-(\mathrm{ODt} / \mathrm{ODC})] * 100 \%$, where; OD_{t} is the mean optical density of wells treated with the test sample, OD_{c} is the mean optical density of untreated cells and The 50% inhibitory concentration (IC_{50}): the concentration required to cause toxic effect in 50% of inactivated cells, was estimated from graphic plots.

2. Results and discussion

2.1. Chemistry

The spectral data for the newly synthesized compounds (2-11) are given in table 2 and 3 . The elemental analysis, some properties and data for these compounds are given below in table 1.

Table 1: some properties and data of synthesize compounds

Product	M. P. $\left.{ }^{(}{ }^{\circ} \mathbf{c}\right)$	Mol. Formula (mol. Wt.)	Yields (\%)	Elemental analysis (\%)			
					C	H	N
2	160-161	$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{5}$ (339)	67.0	Calcd.	67.25	5.01	4.13
				found	67.03	4.98	4.01
3	230-231	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ (412)	71.9	Calcd.	58.25	4.85	13.59
				found	58.08	4.63	13.39
4	155-156	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}(436)$	56.0	Calcd.	60.55	4.59	12.84
				found	60.33	4.23	12.58
5	91-92	$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ (512)	65.0	Calcd.	65.62	4.69	10.94
				found	64.46	4.49	10.73
6	70-71	$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ (554)	63.0	Calcd.	64.98	4.69	10.11
				found	64.78	4.39	10.02
7	209-210	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ (452)	67.0	Calcd.	58.41	4.42	13.39
				found	58.23	4.24	12.26
8	199-200	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ (494)	59.0	Calcd.	58.30	4.45	11.33
				found	58.09	4.33	11.11
9	180-181	$\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}$ (536)	61.0	Calcd.	58.21	4.47	10.45
				found	58.01	4.52	10.23
10 a	248-249	$\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ (540)	71.0	Calcd.	64.44	4.44	10.37
				found	64.22	4.18	10.17
10 b	258-259	$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ (570)	69.0	Calcd.	63.14	4.56	9.82
				found	63.03	4.34	9.59
11 ${ }_{\text {a }}$	135-136	$\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ (582)	63.0	Calcd.	63.92	4.47	9.62
			61.0	found	63.79	4.27	9.43
11 ${ }_{\text {b }}$	214-215	$\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}$ (612)		Calcd.	62.74	4.57	9.15
					62.54	4.39	9.03

Table 2: Spectral characteristics of compounds synthesized

Compd. No.	IR spectrum ($\mathrm{U}, \mathrm{cm}^{-1}$)	${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm
2	$\begin{gathered} 1785 \text { (C=O of oxazol ring), } 1683(\mathrm{C}=\mathrm{N}), 1581(\mathrm{C}=\mathrm{C}), \\ 1234-1124(\mathrm{C}-\mathrm{O}) \end{gathered}$	$\begin{gathered} 3.78 \text { (s, 3H, OCH3), 3.85(s, 6H, } 2 \text { OCH3), 6.89-7.81 (m, 8H, } \\ \text { Ar-H and H-olefinic) } \end{gathered}$
3	3361-3153 (NH_{2}), 3221 (NH), 1729 (C=O), 1643 (C=N), 1581 (C=C), 1452(C=S), 1118-1000(C-O)	$\begin{gathered} \hline 3.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.87\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), \\ 7.09-8.09(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H} \text { and H-olefinic), } 10.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \\ 182.49(\mathrm{C}=\mathrm{S}), 168.63(\mathrm{C}=\mathrm{O}), 158.64-153.61(3 \mathrm{C}-\mathrm{O}), 140.35 \\ (\mathrm{~N}=\mathrm{C}-\mathrm{N}), 136.03(=\mathrm{C}-\mathrm{N}), 134.05,132.41,130.13,129.95, \\ 129.41,129.10,128.92,128.27,127.90-110.57(\mathrm{C}-\text { Aromatic }), \\ 60.73(\mathrm{OCH}), 56.38(2 \mathrm{OCH} 3) \end{gathered}$
4	$\begin{gathered} 1730(\mathrm{C}=\mathrm{O}), 1635(\mathrm{C}=\mathrm{N}), 1577(\mathrm{C}=\mathrm{C}), 1452(\mathrm{C}=\mathrm{S}), 1128- \\ 1002(\mathrm{C}-\mathrm{O}) \end{gathered}$	$2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.87(s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.88(s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 7.30-8.11 (m, 8H, Ar-H and H-olefinic)
5	$\begin{gathered} 3235(\mathrm{NH}), 1722(\mathrm{C}=\mathrm{O}), 1641(\mathrm{C}=\mathrm{N}), 1581(\mathrm{C}=\mathrm{C}), \\ 1455(\mathrm{C}=\mathrm{S}), 1128-1000(\mathrm{C}-\mathrm{O}) \end{gathered}$	3.75 (s, 3H, OCH_{3}), 3.84(s, 3H, OCH_{3}), 3.87(s, 3H, OCH_{3}), 6.98-8.16 (m, 14H, Ar-H, H-olefinic and H-triazine), 10.70 (s, 1H, NH)

6	$\begin{gathered} 1721-1702(\mathrm{br} \mathrm{C}=\mathrm{O}), 1641(\mathrm{C}=\mathrm{N}), 1579(\mathrm{C}=\mathrm{C}), \\ 1455(\mathrm{C}=\mathrm{S}), 1240-1000(\mathrm{C}-\mathrm{O}) \end{gathered}$	$2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.86(s, 3H, OCH_{3}), 7.21-8.11 (m, 14H, Ar-H, H-olefinic and H-triazine)
		$171.50(\mathrm{C}=\mathrm{S}), 170.14 \& 168.58(\mathrm{C}=\mathrm{O}), 158.33$, $153.80 \& 153.70(\mathrm{C}-\mathrm{O}), 148.54(\mathrm{~N}=\mathrm{C}=\mathrm{N}), 140.60(\mathrm{CH}-\mathrm{N})$, $134.49,134.08,133.76,132.47,131.52,129.87,129.30$, $129.71,129.17,128.63,127.71,126.27,125.81,125.61$, $114.52,112.03,111.13,110.85,107.21 \& 105.61(\mathrm{C}-$ Aromatic, C-olefinic and triazine $), 60.77\left(\mathrm{OCH}_{3}\right), 56.44\left(2 \mathrm{OCH}_{3}\right)$, $22.86\left(\mathrm{COCH}_{3}\right)$
7	$\begin{gathered} 3321 \text { (NH), 1731-1673 (br C=O), 1623 (C=N), 1605-1498 } \\ \text { (C=C), 1452(C=S), 1124-1000 (C-O) } \end{gathered}$	$\begin{gathered} \text { 2.50(s, } \left.2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), \\ 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.20-8.07(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}, \mathrm{H} \text {-olefinic), } 10.53 \\ (\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) . \end{gathered}$
		$\begin{gathered} 172.57-166.23(\mathrm{C}=\mathrm{O}), 158.84,153.33-153.27(\mathrm{C}-\mathrm{O}), \\ 140.51(\mathrm{~N}=\mathrm{C}=\mathrm{N}), 136.30,132.40,130.29,129.87,129.52 \\ 129.36,129.21,128.93,128.78,128.49-110.69(\mathrm{C}-\text { Aromatic }), \\ 61.53\left(\mathrm{OCH}_{3}\right), 56.35\left(2 \mathrm{OCH}_{3}\right), 35.05\left(\mathrm{NCH}_{2} \mathrm{CO}\right) \end{gathered}$
8	$\begin{gathered} 1735-1717 \text { (br. C=O), } 1641(\mathrm{C}=\mathrm{N}), 1569(\mathrm{C}=\mathrm{C}), 1498- \\ 1454(\mathrm{C}=\mathrm{S}), 1122-1000(\mathrm{C}-\mathrm{O}) \end{gathered}$	
9	$\begin{gathered} 1733-1710(\text { br. } \mathrm{C}=\mathrm{O}), 1639(\mathrm{C}=\mathrm{N}), 1577(\mathrm{C}=\mathrm{C}), \\ 1452(\mathrm{C}=\mathrm{S}), 1124-1000(\mathrm{C}-\mathrm{O}) \end{gathered}$	2.36 (s, 3H, COCH_{3}), 2.44(s, 3H, OCH_{3}), 3.83-3.88(br. s, 6H, $2 \mathrm{OCH}_{3}$), 6.99-7.13 (m, 9H, Ar-H, H-olefinic and H-triazine) 172.48(C=S), 171.89, 168.10, 167.65\&167.34(C=O), 156.85, 153.35\& 153.27(C-O), 149.17(N=C=N), 141.31(-C-N), 134.02, 133.16, 129.89, 129.29, 129.21, 127.84, 127.77, 127.19, 111.14-101.29 (C-Aromatic and C-olefinic), $60.77\left(\mathrm{OCH}_{3}\right)$, $56.40\left(2 \mathrm{OCH}_{3}\right), 21.49\left(\mathrm{COCH}_{3}\right), 21.08\left(\mathrm{COCH}_{3}\right)$
10a	3235(NH), 1710-1705 (br. C=O), 1629 (C=N), 1604-1577 (C=C), 1450(C=S), 1128\&1000 (C-O)	3.78(s, 3H, OCH_{3}), 3.87(s, 6H, $2 \mathrm{OCH}_{3}$), 7.19-8.09 (m, 14H, Ar-H and H-olefinic), 10.02(S, 1H, NH)
		$\begin{gathered} 193.70(\mathrm{C}=\mathrm{S}), 167.55 \& 166.02(\mathrm{C}=\mathrm{O}), 158.67 \& 153.29(\mathrm{C}-\mathrm{O}), \\ 140.67(\mathrm{~N}=\mathrm{C}=\mathrm{N}), 136.03(\mathrm{~N}-\mathrm{C}=), 135.05,133.32,132.76, \\ 131.59,130.82,130.53,129.95,129.83,129.62,129.54, \\ 129.46,129.37,129.11,128.32,121.91 \& 110.77(\mathrm{C}-\text { Aromatic } \\ \text { and C-olefinic), } 60.74\left(\mathrm{OCH}_{3}\right), 56.40\left(2 \mathrm{OCH}_{3}\right) \end{gathered}$
10b	$\begin{gathered} \hline 3267(\mathrm{NH}), 1706 \text { (br. C=O), } 1639(\mathrm{C}=\mathrm{N}), 1610-1592 \\ (\mathrm{C}=\mathrm{C}), 1454(\mathrm{C}=\mathrm{S}), 1124-1027(\mathrm{C}-\mathrm{O}) \end{gathered}$	3.78(s, 6H, 2 OCH3), 3.87(s, 6H, 2 OCH3), 7.07-8.07 (m, 13H, Ar-H and H-olefinic), 9.87(S, 1H, NH)
11a	$\begin{gathered} 1735-1720(\mathrm{br} . \mathrm{C}=\mathrm{O}), 1631(\mathrm{C}=\mathrm{N}), 1598(\mathrm{C}=\mathrm{C}), \\ 1452(\mathrm{C}=\mathrm{S}), 1126-1000(\mathrm{C}-\mathrm{O}) \end{gathered}$	1.92(S, 3H, $\left.\mathrm{COCH}_{3}\right) 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.88(s, $\left.6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right)$, 7.18-8.09 (m, 14H, Ar-H and H-olefinic), 10.02(S, 1H, NH)

		$\begin{gathered} \text { 172.47(C=S), 167.76, 166.06-165.90(C=O), 158.29, } 153.29- \\ \text { 153.06(O-C Ar), } 140.67(\mathrm{~N}=\mathrm{C}=\mathrm{N}), 136.99(=\mathrm{C}-\mathrm{N}), 136.06, \\ 133.37,132.73,131.64,131.45,131.11,130.76,130.50, \\ 130.26,129.94,129.80,129.51,129.44,129.31,129.11, \\ 128.35,128.02,127.68,127.36,126.91,122.08-110.76(\mathrm{C}- \\ \text { Aromatic and C-olefinic), } 60.72\left(\mathrm{OCH}_{3}\right), 56.38\left(2 \mathrm{OCH}_{3}\right), \\ 21.50\left(\mathrm{COCH}_{3}\right) \end{gathered}$
11b		$\begin{gathered} 1.91\left(\mathrm{~S}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) 3.75\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 3.88(\mathrm{~s}, 6 \mathrm{H}, 2 \\ \left.\mathrm{OCH}_{3}\right), 7.09-8.07(\mathrm{~m}, 13 \mathrm{H}, \text { Ar-H and H-olefinic) } \end{gathered}$
	$\begin{gathered} 1737-1720 \text { (br. C=O), } 1635 \text { (C=N), } 1587 \text { (C=C), } \\ 1452(\mathrm{C}=\mathrm{S}), 1255,1151-1022(\mathrm{C}-\mathrm{O}) \end{gathered}$	$\begin{gathered} 172.47(\mathrm{C}=\mathrm{S}), 167.77,166.36 \& 162.36(\mathrm{C}=\mathrm{O}), 158.67,156.79 \\ 153.34-153.29(\mathrm{O}-\mathrm{C} \mathrm{Ar}), 141.29(\mathrm{~N}=\mathrm{C}=\mathrm{N}), 139.30(=\mathrm{C}-\mathrm{N}), \\ 136.07,133.78,133.34,132.73,132.60,132.26,131.84 \\ 129.82,129.44,129.23,128.35,127.87,127.03,125.81, \\ 123.32,118.66,115.62,114.97-110.47(\mathrm{C}-\text { Aromatic and C- } \\ \text { olefinic), } 60.77\left(\mathrm{OCH}_{3}\right), 56.41\left(2 \mathrm{OCH}_{3}\right), 55.87\left(\mathrm{OCH}_{3}\right), \\ 21.50\left(\mathrm{COCH}_{3}\right) \end{gathered}$

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were taken in DMSO- d_{6} for all compounds
The mass spectral decomposition modes of the prepared heterocyclic compounds containing triazine ring have been investigated.

Compound 3

The mass spectrum of compound 3 (figure 2d) showed an intense molecular ion peak at $\mathrm{m} / \mathrm{z} 412$, corresponding to the molecular formula C20H20N4O4S. The molecular ion of compound 3 (scheme 11) underwent fragmentation to produce a peak at $\mathrm{m} / \mathrm{z} 353$ by losing NHCS group. The loss of NH group from the ion with $\mathrm{m} / \mathrm{z} 353$ resulted in an ion at $\mathrm{m} / \mathrm{z} 338$, which lost carbonyl group (CO) to give peak at $\mathrm{m} / \mathrm{z} 310$. The ion at $\mathrm{m} / \mathrm{z} 310$ underwent fragmentation to produce stable peaks at $\mathrm{m} / \mathrm{z} 206$ and 104. The ion at $\mathrm{m} / \mathrm{z} 104$ underwent loss of hydrogen cyanide (HCN) and acetylene molecule to give peaks at $\mathrm{m} / \mathrm{z} 77 \mathrm{and} \mathrm{m} / \mathrm{z} 51$, respectively. Also the ion at $\mathrm{m} / \mathrm{z} 104$ underwent loss of hydrogen atom to give peaks at $\mathrm{m} / \mathrm{z} 103$. Also the ion at $\mathrm{m} / \mathrm{z} 412$ underwent fragmentation with rearrangement to produce peak at $\mathrm{m} / \mathrm{z} 395$. The ion at $\mathrm{m} / \mathrm{z} 395$ underwent loss of (N2CS) to give peaks at m / z 323. The stable ion at $\mathrm{m} / \mathrm{z} 323$ underwent fragmentation with rearrangement to produce peak at $\mathrm{m} / \mathrm{z} 103$, which underwent loss of cyanide and acetylene molecule to give peaks at $\mathrm{m} / \mathrm{z} 77$ and $\mathrm{m} / \mathrm{z} 51$, respectively.

Compound 4

From the mass spectrum of compound 4 (figure 3_{c}), it was concluded that the molecular ion was at $m / z 436$, corresponding to the molecular formula $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$. The loss of methyl nitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, isocyanate group (NCO) and nitrogen atom (N) from the molecular ion peak at $\mathrm{m} / \mathrm{z} 436$ gave a peak at $\mathrm{m} / \mathrm{z} 339$. The ion at $\mathrm{m} / \mathrm{z} 339$ underwent fragmentation with rearrangement to produce peak at $\mathrm{m} / \mathrm{z} 148$, which lost thiocarbonyl ($\mathrm{C}=\mathrm{S}$) group to give peak at $\mathrm{m} / \mathrm{z} 104$. The stable peak at $\mathrm{m} / \mathrm{z} 77$ was obtained by loss of hydrogen cyanide from the ion of $\mathrm{m} / \mathrm{z} 104$. The stable ion at $\mathrm{m} / \mathrm{z} 77$ underwent loss of acetylene molecule to give peaks at $\mathrm{m} / \mathrm{z} 51$

Compound 7, 8 and 9

The mass spectrum of compounds 7,8 and 9 (figure $6_{d}, 7_{b}$ and 8_{d}) showed the molecular ion peaks at $\mathrm{m} / \mathrm{z} 452, \mathrm{~m} / \mathrm{z} 494$ and m / z 536 corresponding to the molecular formula $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}, \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}$ and $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}$, respectively. The molecular ion peak of diacetyl derivative (9) (figure 8_{d}) was observed at $\mathrm{m} / \mathrm{z} 536$ corresponding to the molecular formula $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}$. The loss of ketene molecule $\left(\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O}\right)$ from the molecular ion at $\mathrm{m} / \mathrm{z} 536$ gave a fragment ion of $\mathrm{m} / \mathrm{z} 494$, corresponding to the
molecular ion of compound 8 (figure 7_{d}). The molecular ion of compound 8 of $\mathrm{m} / \mathrm{z} 494$ underwent fragmentation to produce a peak at $\mathrm{m} / \mathrm{z} 452$, corresponding to the molecular ion of compound 7 (figure 6_{d}) by losing ketene molecule ($\mathrm{CH}_{2} \mathrm{CO}$)

Compounds $\mathbf{1 0}_{\mathrm{a}, \mathrm{b}}$ and $\mathbf{1 1}_{\mathrm{a}, \mathrm{b}}$

The mass spectrum of compounds10a, 10b, 11a and 11b (figures 9d, 10c, 11d and 12d) showed the molecular ion peaks at $\mathrm{m} / \mathrm{z} 540, \mathrm{~m} / \mathrm{z} 570, \mathrm{~m} / \mathrm{z} 582$ and $\mathrm{m} / \mathrm{z} 612$ corresponding to the molecular formula C29H29N4O5S, C30H26N4O6S, C31H26N4O6S and C32H28N4O7S, respectively. The molecular ion peak of 11b (figure 12d) was observed at $\mathrm{m} / \mathrm{z} 612$ corresponding to the molecular formula C 32 H 28 N 4 O 7 S . The loss of ketene molecule ($\mathrm{CH} 2=\mathrm{C}=\mathrm{O}$) from the molecular ion at m / z 612 gave a fragment ion of $\mathrm{m} / \mathrm{z} 570$, corresponding to the molecular ion of compound 10 b (figure 10 c). The loss of ketene molecule $(\mathrm{CH} 2=\mathrm{C}=\mathrm{O})$ and $(\mathrm{CH} 2=\mathrm{O})$ from the molecular ion at $\mathrm{m} / \mathrm{z} 582$ gave a fragment ion of $\mathrm{m} / \mathrm{z} 540$, corresponding to the molecular ion of compound 10a. Also the loss of ($\mathrm{CH} 2=\mathrm{O}$) from the molecular ion at $\mathrm{m} / \mathrm{z} 570$ gave a fragment ion of $\mathrm{m} / \mathrm{z} 540$, corresponding to the molecular ion of compound 10a. The molecular ion of compound 10a at $\mathrm{m} / \mathrm{z} 540$ underwent fragmentation with rearrangement to produce peaks at $\mathrm{m} / \mathrm{z} 339, \mathrm{~m} / \mathrm{z} 338$ and $\mathrm{m} / \mathrm{z} 323$, respectively. The ion at $\mathrm{m} / \mathrm{z} 339$ underwent fragmentation with rearrangement to produce peak at $\mathrm{m} / \mathrm{z} 148$, which lost thiocarbonyl ($\mathrm{C}=\mathrm{S}$) group to give peak at $\mathrm{m} / \mathrm{z} 104$. The ion at $\mathrm{m} / \mathrm{z} 104$ underwent loss of hydrogen cyanide (HCN) and acetylene molecule to give peaks at $\mathrm{m} / \mathrm{z} 77$ and $\mathrm{m} / \mathrm{z} 51$, respectively. Also the ion at $\mathrm{m} / \mathrm{z} 338$ underwent fragmentation to produce stable peaks at $\mathrm{m} / \mathrm{z} 206$ and 104 . The stable ion at $\mathrm{m} / \mathrm{z} 323$ underwent fragmentation with rearrangement to produce peak at $\mathrm{m} / \mathrm{z} 103$, which underwent loss of cyanide and acetylene molecule to give peaks at $\mathrm{m} / \mathrm{z} 77$ and $\mathrm{m} / \mathrm{z} 51$, respectively

Table 3: Mass spectra of compounds

Compd. No.	m/z (\%)
2	$\begin{aligned} & \hline \hline 340\left(\mathrm{M}^{+}+1,6.24\right), 339\left(\mathrm{M}^{+}, 31.98\right), 207(1.09), 206(4.69), 198(1.24), 197(3.28), 196(29.02), 182(2.18), 181(14.49), \\ & 175(1.07), 173(3.05), 166(1.31), 165(1.71), 162(1.36), 161(2.97), 160(1.24), 154(1.05), 153(2.44), 152(1.29), 151(1.43), \\ & 148(1.51), 146(2.65), 136(1.79), 135(2.43), 134(1.85), 130(1.29), 125(5.06), 123(1.80), 121(1.56), 120(1.50), 119(1.46), \\ & 118(1.05), 117(1.02), 110(5.30), 109(1.17), 107(2.18), 106(7.83), 105(100), 103(1.82), 93(3.43), 92(1.37), 91(1.03), \\ & 78(2.92), 77(24.05), 76(3.84), 65(2.73), 64(1.16), 63(1.94), 54(3.32), 53(2.16), 52(12.80), 51(4.12) . \end{aligned}$
3	$413\left(\mathrm{M}^{+}+1,2.66\right), 412\left(\mathrm{M}^{+}, 8.78\right), 397$ (3.69), $395(17.70), 380(2.42), 378(4.48), 354(3.24), 353(10.31), 339(31.58)$, $338(100), 324(19.89), 323(31.35), 322(4.19), 310(2.66), 308(3.13), 307(3.78), 306(2.62), 294(2.52), 293(2.56), 292(6.19)$, $281(2.49), 280(2.49), 279(2.40), 235(3.17), 234(4.85), 207(4.05), 206(11.67), 204(2.41), 193(7.44), 192(44.82), 181(6.47)$, $178(4.04), 177(4.69), 176(4.92), 173(5.22), 165(2.97), 164(7.26), 163(4.02), 162(7.28), 161(16.26), 154(2.37), 153(2.86)$, $151(2.60), 149(7.13), 148(5.27), 146(8.01), 145(4.51), 136(3.10), 134(5.77), 132(3.91), 131(3.97), 121(3.66), 120(6.42)$, $119(18.69), 118(4.45), 117(3.80), 116(2.68), 106(7.30), 105(55.04), 104(60.59), 103(22.86), 92(3.38), 91(4.01), 89(3.72)$, $78(6.18), 77(40.81), 76(9.95), 65(2.99), 64(7.64), 63(4.20), 61(5.68), 60(6.61), 54(4.69), 53(4.61), 52(12.84), 51(6.30)$.
4	$\begin{aligned} & \hline 437\left(\mathrm{M}^{+}+1,9.02\right), 436\left(\mathrm{M}^{+}, 9.15\right), 392(9.12), 390(9.24), 374(9.67), 370(9.19), 367(9.33), 365(9.27), 361(9.18), 358(9.89), \\ & 355(9.27), 350(10.99), 344(10.35), 340(11.21), 339(26.02), 338(9.55), 337(9.18), 329(12.23), 313(11.61), 307(13.46), \\ & 291(15.28), 284(14.44), 273(17.03), 260(19.99), 256(10.10), 247(9.98), 232(13.15), 208(54.64), 206(12.29), 192(9.12), \\ & 181(9.42), 176(9.05), 173(10.22), 164(9.52), 162(9.24), 161(10.26), 157(64.21), 148(9.12), 146(9.76), 135(83.80), \\ & 134(4.36), 130(9.24), 121(9.39), 120(9.62), 119(9.42), 117(9.39), 115(9.02), 107(9.12), 106(15.12), 105(100), 104(12.35), \\ & 103(10.59), 102(9.22), 92(9.18), 91(9.21), 90(9.21), 89(9.52), 78(9.74), 77(28.80), 75(10.47), 65(9.49), 64(9.95), 63(9.39), \\ & 58(17.37), 55(9.56), 53(9.55), 52(15.15), 51(10.59) . \end{aligned}$
5	$\begin{aligned} & \hline 513\left(\mathrm{M}^{+}+1,10.49\right), 512\left(\mathrm{M}^{+}, 22.98\right), 370(6.03), 369(11.13), 354(5.69), 339(8.71), 338(29.43), 337(22.15), 324(5.27), \\ & 323(15.14), 321(5.66), 307(6.10), 304(5.80), 279(6.65), 234(5.54), 207(7.86), 206(10.43), 203(7.06), 195(8.71), 194(7.88), \\ & 193(15.11), 192(42.90), 191(6.90), 190(7.03), 189(7.60), 183(7.57), 182(6.07), 181(16.19), 178(12.06), 177(18.31), \end{aligned}$

	$\begin{aligned} & \hline 176(100), 175(13.53), 174(10.35), 173(7.83), 167(5.46), 165(5.08), 164(7.23), 162(6.37), 161(6.07), 149(7.27), 148(12.01), \\ & 147(5.35), 135(7.45), 134(32.25), 133(6.23), 129(5.98), 121(6.14), 119(5.51), 106(5.57), 105(22.62), 104(27.21), \\ & 103(11.56), 102(6.54), 91(6.98), 90(6.66), 89(7.17), 77(16.44), 53(6.07), 52(14.23), 51(11.26) . \end{aligned}$
6	$\begin{aligned} & \hline 554\left(\mathrm{M}^{+}, 8.83\right), 519(8.70), 499(11.13), 474(15.52), 432(25.12), 429(8.91), 349(100), 348(9.45), 344(9.08), 338(8.80), \\ & 323(10.87), 317(9.20), 294(10.31), 288(9.14), 287(9.03), 267(9.66), 256(25.81), 222(9.51), 218(10.50), 200(48.97), \\ & 192(8.85), 183(8.95), 181(13.49), 178(67.23), 176(16.71), 168(13.65), 148(9.52), 144(22.15), 134(14.05), 121(31.08), \\ & 105(16.58), 104(13.22), 103(9.45), 102(9.29), 89(72.86), 80(8.74), 77(20.05), 75(10.82), 66(11.71), 65(11.31), 64(20.39), \\ & 63(11.88), 57(12.80), 56(9.10), 53(9.68), 52(23.09), 51(9.74) . \end{aligned}$
7	$\begin{aligned} & \hline 453\left(\mathrm{M}^{+}+1,20.29\right), 452\left(\mathrm{M}^{+}, 100\right), 437(4.08), 339(3.89), 338(24.44), 337(5.61), 324(3.71), 323(7.54), 307(3.68), \\ & 305(3.74), 304(6.03), 276(3.13), 274(5.18), 234(6.65), 220(4.04), 219(8.20), 218(62.37), 217(4.35), 207(5.88), 206(30.91), \\ & 192(10.64), 191(3.69), 190(7.12), 181(4.87), 177(3.92), 176(4.95), 164(4.51), 163(3.78), 162(5.97), 161(9.63), 149(7.41), \\ & 148(23.58), 147(4.24), 146(10.91), 145(6.17), 144(7.43), 134(6.48), 133(4.42), 132(4.68), 131(6.05), 129(3.78), 121(4.07), \\ & 120(5.01), 119(7.12), 118(4.82), 117(11.66), 116(8.50), 115(5.58), 106(5.88), 105(33.96), 104(71.86), 103(55.92), 92(3.30), \\ & 91(5.58), 90(5.12), 89(7.29), 87(44.08), 78(4.73), 77(22.35), 76(10.09), 65(3.04), 63(6.94), 61(3.03), 52(8.79), 51(5.95) . \end{aligned}$
8	$\begin{aligned} & \hline 495\left(\mathrm{M}^{+}+1,5.99\right), 494\left(\mathrm{M}^{+}, 6.99\right), 487 \text { (7.74), 486 (7.74), 453(6.53), 452(15.78), 451(7.79), 392(8.27), 388(8.92), 366(7.88), } \\ & 365(10.05), 363(7.60), 340(10.33), 339(27.97), 338(80.00), 337(29.13), 324(21.77), 323(36.89), 322(11.07), 321(11.60), \\ & 307(9.04), 306(15.64), 305(3.39), 293(8.23), 292(11.32), 279(9.76), 278(11.86), 277(8.09), 275(10.67), 235(10.95), \\ & 234(22.04), 233(9.56), 219(6.99), 218(0.84), 217(6.04), 204(7.99), 203(11.09), 196(7.48), 195(8.53), 192(58.75), \\ & 191(44.65), 190(13.33), 182(12.10), 181(23.58), 178(12.87), 177(11.09), 174(13.01), 173(11.18), 165(21.79), 164(89.40), \\ & 163(21.79), 151(14.51), 150(21.47), 149(56.47), 148(23.89), 146(19.95), 135(19.34), 134(33.21), 133(14.28), 121(34.82), \\ & 120(21.61), 119(14.70), 117(14.36), 116(17.18), 115(10.79), 110(10.04), 106(14.61), 105(33.74), 104(100), 103(46.40), \\ & 102(10.42), 92(10.07), 91(16.59), 90(14.82), 89(10.97), 78(13.03), 77(39.15), 76(18.68), 65(8.76), 64(10.80), 63(11.95), \\ & 58(14.83), 57(12.19), 56(11.39), 53(14.21), 52(26.54), 51(27.80) . \end{aligned}$
9	$\begin{aligned} & 537\left(\mathrm{M}^{+}+1,7.36\right), 536\left(\mathrm{M}^{+}, 76.90\right), 494(42.03), 452(55.40), 339(10.46), 338(38.45), 337(100), 323(12.15), 321(6.46), \\ & 307(12.52), 306(11.45), 277(3.97), 276(15.70), 264(6.09), 263(5.04), 235(5.89), 234(15.29), 208(5.88), 207(18.18), \\ & 206(46.88), 193(8.64), 192(44.81), 181(12.44), 174(4.31), 173(19.63), 162(7.98), 161(17.04), 160(4.91), 149(6.10), \\ & 146(12.98), 144(11.72), 134(6.88), 120(7.04), 119(6.74), 117(6.63), 116(6.26), 105(19.26), 104(45.80), 103(34.65), \\ & 92(3.38), 91(4.74), 90(3.72), 89(3.74), 78(7.73), 77(30.48), 76(10.63), 65(4.95), 64(9.75), 63(6.30), 53(3.69), 52(12.04), \\ & 51(7.10), 47(11.59) . \end{aligned}$
10 a	$542.15\left(\mathrm{M}^{+}+2,4.30\right), 540\left(\mathrm{M}^{+}, 6.30\right), 523$ (11.46), 520 (4.17), 516(5.08), 454(5.99), 443(7.55), 400(5.34), 399(4.56), 339(10.16), 338(40.36), 324(9.64), 323(11.07), 293(5.60), 292(12.11), 285(14.58), 268(7.55), 266(7.42), 208(8.47), 206(6.77), 205(7.94), 204(17.84), 202(13.93), 193(3.39), 192(14.19), 182(3.91), 181(28.13), 177(8.07), 169(14.84), 162(14.58), 148(13.15), 135(14.58), 134(100), 121(10.94), 118(8.33), 117(10.16), 116(5.08), 105(34.24), 104(76.82), 103(27.08), 102(6.12), 91(27.60), 90(19.68), 89(16.93), 78(11.72), 77(36.90), 76(10.55), 64(16.28), 63(3.52), 59(13.28), 57(14.19), 56(11.20), 53(29.30), 52(28.26), 51(10.55), 48(19.40), 47(18.80).
10b	$\begin{aligned} & \hline \hline 571\left(\mathrm{M}^{+}+1,11.14\right), 570\left(\mathrm{M}^{+}, 14.35\right), 569\left(\mathrm{M}^{+}-1,6.07\right), 542(6.63), 541(7.11), 540(10.46), 452(6.37), 353(10.60), \\ & 352(10.02), 340(8.85), 339(18.29), 338(45.61), 337(10.23), 324(17.76), 323(22.19), 322(6.07), 235(9.07), 234(13.51), \\ & 227(6.79), 226(10.25), 207(8.53), 206(9.72), 196(10.18), 195(8.05), 193(14.11), 192(30.36), 191(44.90), 190(11.70), \\ & 183(9.26), 182(7.39), 181(18.38), 175(8.26), 174(10.75), 166(12.50), 165(28.53), 164(100), 163(18.51), 161(19.61), \\ & 151(13.92), 150(21.80), 149(58.43), 148(12.70), 147(10.91), 146(15.67), 145(10.17), 135(17.02), 134(20.12), 133(13.18), \end{aligned}$

	$\begin{aligned} & 132(12.38), 121(29.05), 120(11.95), 119(12.27), 118(10.13), 117(11.12), 105(26.14), 104(56.59), 103(33.69), 102(6.68), \\ & 91(18.47), 90(9.78), 89(17.11), 78(6.88), 77(42.06), 76(13.12), 69(12.75), 65(9.81), 64(10.47), 63(7.29), 57(12.92), \\ & 56(12.34), 54(10.91), 52(19.60), 47(19.54) . \end{aligned}$
11 ${ }_{\text {a }}$	$\begin{aligned} & \hline 583\left(\mathrm{M}^{+}+1,1.38\right), 582\left(\mathrm{M}^{+}, 1.11\right), 540(1.11), 510(4.93), 509(10.94), 508(1.31), 452(2.01), 451(2.52), 426(3.85), \\ & 425(3.38), 399(4.74), 398(12.95), 397(27.08), 396(4.52), 384(2.97), 383(3.35), 382(3.52), 381(4.30), 367(3.74), 363(2.02), \\ & 362(2.08), 361(4.42), 354(2.62), 353(3.13), 351(2.67), 348(3.01), 340(3.60), 339(20.61), 338(33.55), 324(5.75), 323(14.61), \\ & 322(4.11), 307(7.730,306(10.99), 305(19.53), 304(6.47), 297(4.02) 296(6.99), 295(3.53), 281(3.80), 280(5.55), 279(3.37), \\ & 278(3.52), 270(3.13), 269(11.64), 262(4.53), 261(10.24), 259(5.30), 254(4.28), 253(3.47), 248(5.10), 247(3.53), 246(3.06), \\ & \text { 207(97.30), 206(8.92), 205(6.02), 204(5.53), 196(4.87), 195(10.38),193(8.60),192(19.98),191(5.76),179(5.84),} \\ & \text { 178(11.77), 177(8.19), 176(5.30), 174(15.71), 173(14.05), 172(23.61), 165(10.09), 164(8.66), 163(6.10),} \\ & 162(10.80), 161(20.44), 160(5.96), 147(5.55), 146(6.42), 145(5.06), 135(9.75), 134(46.81), 133(7.51), 121(8.28), 120(9.54), \\ & 119(8.30), 118(7.60), 117(8.98), 116(10.25), 115(8.05), 106(14.50), 105(100), 104(58.58), 103(46.32), 102(26.46), \\ & 91(30.20), 90(16.38), 89(14.73), 84(41.17), 78(7.75), 77(40.79), 76(13.05), 69(10.30), 65(5.13), 64(7.62), 63(3.61), \\ & 57(12.08), 56(7.24), 52(21.27), 51(9.77), 47(15.40) . \end{aligned}$
$\mathbf{1 1}_{\text {b }}$	$\begin{aligned} & \hline 612\left(\mathrm{M}^{+}, 17.20\right), 586(17.20), 571(25.60), 570(13.20), 555(16.20), 554(23.23), 553(14.20), 540(52.55), 539(13.68), \\ & 497(10.01), 488(9.350,487(20.03), 393(11.96), 381(10.56), 380(13.75), 379(10.99), 370(10.49), 365(10.44), 363(10.44), \\ & 354(10.18), 340(10.44), 339(18.46), 338(46.72), 337(28.71), 335(10.29), 325(16.22), 324(21.67), 323(31.61), 322(16.10), \\ & 321(10.44), 307(14.03), 306(15.15), 305(11.30), 292(14.32), 291(13.99), 285(11.16), 262(10.78), 261(10.37), 254(11.73), \\ & 253(10.89), 236(13.20), 235(12.35), 234(14.46), 206(19.65), 205(17.08), 204(15.56), 203(10.16), 195(10.94), 193(14.70), \\ & 192(35.80), 191(37.38), 167(12.11), 165(21.33), 164(72.36), 163(19.72), 162(17.03), 161(63.30), 158(10.51), 153(12.13), \\ & 152(10.63), 151(17.95), 150(21.76), 149(59.23), 147(16.51), 146(19.74), 135(25.17), 134(83.92), 133(28.28), 121(34.47), \\ & 120(15.87), 119(26.86), 118(17.10), 117(14.65), 105(50.09), 104(100), 103(45.03), 102(16.03), 91(21.96), 90(21.30), \\ & 89(25.74), 78(16.30), 77(46.10), 76(18.40), 75(12.02), 65(10.25), 64(11.02), 63(23.20), 57(13.30), 56(14.39), 52(37.50), \\ & 51(31.50), 47(17.44) . \end{aligned}$

2.2. Biological activity

2.2.1 Antibacterial activity

The in vitro results of antibacterial activity of the newly synthesized compounds 3-11 are presented in table $\mathbf{4}$ as zone of inhibition. Some of the compounds displayed moderate to good inhibition. Here, the Gram-positive bacteria, B. Subtilis, St. Pneumonia and S. aureus showed relative high sensitivity toward the fused s-triazine derivatives 7,8 and 9 whereas the compound $\mathbf{1 0}_{\mathbf{b}}$ and $\mathbf{1 1}_{\mathrm{b}}$ exhibited moderate activity against the same organism. With regard to the activity against Gram-negative bacteria, EColi and Pseudomonas Sp., the best activity was displayed by compounds $\mathbf{7 , 8} \mathbf{8}$ and $\mathbf{1 1}_{\mathbf{b}}$ While, compounds $\mathbf{9}$ and $\mathbf{1 0}_{\mathbf{b}}$ exhibited moderate activity against the same organism.

Table 4: Antibacterial activities of tested 1,2,4-triazine derivatives (3-11)

Compd.	The inhibition zones of the investigated compounds, mm				
	Gram positive bacteria			Gram negative bacteria	
	B. Subtilis	St. Pneumonia	St. Aureas	E-Coli	Pseudomonas Sp.
$\mathbf{3}$	6	1	2	5	4
$\mathbf{4}$	5	3	8	2	8
$\mathbf{5}$	9	5	12	7	3
$\mathbf{6}$	4	3	9	11	12

Compd.	The inhibition zones of the investigated compounds, mm				
	Gram positive bacteria			Gram negative bacteria	
	B. Subtilis	St. Pneumonia	St. Aureas	E-Coli	Pseudomonas Sp.
$\mathbf{7}$	19	15	18	20	23
$\mathbf{8}$	16	19	21	19	24
$\mathbf{9}$	18	20	17	20	18
$\mathbf{1 0 a}$	4	13	5	13	14
$\mathbf{1 0 b}$	10	15	16	14	19
$\mathbf{1 1 a}$	3	9	11	14	12
$\mathbf{1 1 b}$	8	11	18	20	24
Streptomycin	18	17	20	22	27

2.2.2 Antifungal activity

Concerning the antifungal activity of the tested compounds presented in table 5, only 1,2,4-triazine derivatives namely, 7, 8, 9, 10 ${ }_{\text {a }}$ and $\mathbf{1 1 b}$ showed sensitivity against Aspergillus Niger, Penicillium sp. and Candida albicans, whereas the rest of the derivatives were reasonably active or insensitive. The 1,2,4-triazine derivatives 7 and $\mathbf{8}$ displayed higher sensitive against mentioned fungal strains. Moreover compounds $\mathbf{9 , 1 0} \mathbf{1 0}_{\mathrm{a}}$ and $\mathbf{1 1}_{\mathbf{b}}$ were also found to be moderately active against the same strain.

Table 5: Antifungal activities of tested 1,2,4-triazine derivatives (3-11)

Compd.	The inhibition zones of the investigated compounds, mm		
	Aspergillus niger	Penicillium sp.	Candida albicans
3	2	3	- -
4	5	7	1
5	5	9	7
6	8	8	12
7	17	15	22
8	19	23	21
9	11	17	18
10a	11	13	12
10b	9	11	15
11a	8	11	12
11b	15	18	17
Ketoconazole	18	21	21

2.2.3 Cytotoxicity evaluation of fused triazines derivatives

The activity of new compounds against hepatocellular carcinoma cell line (HepG-2) reported in table 6 and the results of 50% inhibitory concentration (IC_{50}) data are summarized in table 7 suggests that only triazines derivatives compounds (3, 7, 9 and $\mathbf{1 1}_{\mathrm{a}, \mathrm{b}}$) were active in terms of IC_{50}, in which the compound $\mathbf{1 1}_{\mathrm{a}}$ showed highest activity at value of 2.01 . However, $\mathbf{3}, \mathbf{7}, \mathbf{9}$ and $\mathbf{1 1}_{\mathbf{b}}$ also indicated significant activity against liver cancer HepG-2 cell line at IC_{50} value of $4.57,4.58,2.89$ and 3.43 , respectively.

Also compounds $\mathbf{8}$ and $\mathbf{1 0}_{\mathrm{a}, \mathrm{b}}$ were observed less active against HepG-2 cell line than standard antitumor drugs(Vinblastine and doxorubicin) while compound $\mathbf{4}$ is inactive.

Table 6: Evaluation of cytotoxicity of fused triazines derivatives 3, 4 and 7-11

Compound		Sample conc. ($\mu \mathrm{g}$)						
		50	25	12.5	6.25	3.125	1.56	0
	3	11.48	20.66	31.89	42.63	56.32	71.54	100
	4	56.88	69.32	86.91	92.74	98.08	100	100
	7	8.31	15.96	23.43	33.68	64.21	85.59	100
	8	19.54	26.16	41.38	80.81	91.17	96.94	100
	9	8.12	14.69	19.86	30.64	46.97	65.18	100
	10a	14.78	26.57	33.95	65.53	88.19	96.32	100
	10b	13.74	25.37	53.96	68.82	79.21	93.98	100
	11a	6.83	10.65	15.49	20.27	29.42	58.38	100
	11b	7.18	13.86	21.43	34.92	51.66	78.51	100
	Vinblastine standard	14.38	16.13	24.25	45.13	55.0	72.13	100
	Doxorubian standard	10.95	14.29	16.9	21.03	30.32	48.25	100

Fig. 1: The inhibitory activities of compounds 3 and 4

Fig. 2: The inhibitory activities of compounds 7 and $\mathbf{8}$

Fig. 3: The inhibitory activities of compounds 9 and 10a

Fig. 4: The inhibitory activities of compounds $\mathbf{1 0}_{\mathbf{b}}$ and $\mathbf{1 1}_{\mathrm{a}, \mathbf{b}}$
Table 7: The results of 50% inhibitory concentration (IC50) data of fused triazines derivatives

Compound No.	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}_{\mathbf{a}}$	$\mathbf{1 0}_{\mathbf{b}}$	$\mathbf{1 1}_{\mathbf{a}}$	$\mathbf{1 1}_{\mathbf{b}}$	Vinblastine standard	Doxorubicin standard
HepG-2 cell line	4.57	>50	4.58	11.1	2.89	9.32	14.2	2.01	3.43	4.60	1.20

Conclusion

In conclusion, we report an efficient synthesis of New series of fused 1,2,4-triazine derivatives and the structures of these compounds were confirmed by IR, ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, MS and elemental analysis. The bioassay results revealed that, most of the 1,2,4-triazine derivatives compounds displayed an exceptional in vitro antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria and fungal strains. Also reported that some of 1,2,4-triazine derivatives compounds displayed anticancer activity for liver cancer cells (the compounds show a promising inhibitory growth efficacy with compared standard anticancer drugs), finally compounds $\mathbf{3}, \mathbf{7}, \mathbf{9}$, and $\mathbf{1 1}_{\mathrm{a}, \mathrm{b}}$ can be suggested as potent candidates for liver cancer treatment.

References

1. N. W. Gibson, L. C. Erickson, J. A. Hickman, The effects of pretreatment of human tumour cells with MNNG on the DNA crosslinking and cytotoxicity of mitozolomide, Cancer Res 1984, 44, 1767.
2. D. S. Pilch, M. A. Kirolos, X. Liu, G. E. Plum, K. J. Breslauer, Berenil [1,3-bis(4'-amidinophenyl)triazene] binding to DNA duplexes and to a RNA duplex: evidence for both intercalative and minor groove binding properties , Biochem. 1995, 34, 9962.
3. B. J. Jean-Claude, A. Mustafa, N. D. Cetateanu, Z. Damian, J. De Marte, R. Yen, D. Vasilescu, T. H. Chan, and B. LeylandJones. Design and mechanism of action of a novel cytotoxic 1,2,3-triazene-containing heterocycle, 3,5-dimethyl-pyrido-1,2,3,5-tetrazepin-4-one (PYRZ), in the human epithelial ovarian cancer cell line NIH:OVCAR-3 in vitro, Biochem. Pharmacol. 1999, 57, 753.
4. R. H. Smith, D. A. Scudiero , Christopher J. Michejda, 1,3-Dialkyl-3-acyltriazenes, a novel class of antineoplastic alkylating agent, J. Med. Chem. 1990, 33, 2579,
5. Unsalan S, Rollas S. "Synthesis and primary cytotoxicity evaluation of new diaryltriazenes." Indian J. Chem.Sec. B-Org. Chem. Inc. Med. Chem. 2007, 46B, 185.
6. Kumar A, Mukerjee SK, Bhattacharya SK. Synthesis of N3-4-substituted-aryl-N1-(alkyl/aryl-substituted aryl)triazene-N1oxides as potential anticonvulsant agents. Pharmazie. 1983, 38, 66.
7. Katsoulas A, Rachid Z, Brahimi F, McNamee J, Jean-Claude BJ. Engineering 3-alkyltriazenes to block bcr-abl kinase: a novel strategy for the therapy of advanced bcr-abl expressing leukemias. Leukemia Res. 2005, 29,693.
8. Seiter K, Liu D, Loughran T, Siddiqui A, Baskind P, Ahmed T. J. Phase I study of temozolomide in relapsed/refractory acute leukemia. Clin. Oncol 2002, 20(15), 3249.
9. Manolov I, Machulla HJ, Momekov G. Synthesis, physicochemical characterization and preliminary pharmacological in vitro evaluation of two novel cytotoxic benzophenone-linked 3,3-dimethyltriazenes Pharmazie 2006, 61(6), 511.
10. S.B. Levy, B. Marshall, Antibacterial resistance worldwide: causes, challenges and responses, Nat. Med. 10 (2004) S122S129.
11. R.V. Patel, P. Kumari, D.P. Rajani, C. Pannecouque, E. De Clercq, K.H. Chikhalia, Antimicrobial, anti-TB, anticancer and anti-HIV evaluation of new s triazine-based heterocycles, Future, Med. Chem. 4 (2012) 1053-1065.
12. A.R. Mishra, S. Singh, Antifungal activity of new 1,3,4- oxadiazolo[3,2-a]-s-triazine-5,7-diones and Their 5-thioxo-7- ones, J. Agric. Food Chem. 48 (2000) 5465-5468.
13. D.H. Patel, K.H. Chikhalia, N.K. Shah, D.P. Patel, P.B. Kaswala, V.M. Buha, Synthesis and antimicrobial studies of striazine based heterocycles, J. Enzyme Inhib. Med. Chem. 25 (2010) 121-125.
14. G.J. Kumar, H.V.S.S. Bomma, E. Srihari, S. Shrivastava, V.G.M. Naidu, K. Srinivas, V.J. Rao, Synthesis and anticancer activity of some new s-triazine derivatives, Med. Chem. Res. 22 (2013) 5973-5981.
15. B. Liu, Y. Lee, J. Zou, H.M. Petrassi, R.W. Joseph, W. Chao, E.L. Michelotti, M. Bukhtiyarova, E.B. Springman, B.D. Dorsey, Discovery and SAR of a series of 4,6-diamino-1,3,5-triazin-2-ol as novel non-nucleoside reverse transcriptase inhibitors of HIV-1, Bioorg. Med. Chem. Lett. 20 (2010) 6592-6596.
16. C. Dianzani, M. Collino, M. Gallicchio, R. Fantozzi, S. Samaritani, G. Signore, R. Menicagli, Evolution of in-vitro antiinflammatory activity of some 2-alkyl-4,6 dimetoxy-1,3,5-triazines, J. Pharm. Pharmacol. 58 (2006) 219-226.
17. V.R. Avupati, R.P. Yejella, V.R. Parala, K.N. Killari, V.M.R. Papasani, P.Cheepurupalli, V.R.Gavalapu, B. Boddeda, Synthesis, characterization and in vitro biological evaluation of some novel 1,3,5-triazine-Schiff base conjugates as potential antimycobacterial agents, Bioorg. Med. Chem. Lett. 23 (2013) 5968-5970.
18. H. R. Bhat, U.P. Singh, P. Gahtori, S.K. Ghosh, K. Gogoi, A. Prakashe, R.K. Singh, 4-Aminoquinoline-1,3,5-triazine: design, synthesis, in vitro antimalarial activity and docking studies, New J. Chem. 37 (2013) 2654-2662.
19. J. Zhang, P.L. Yang, N.S. Gray, Targeting cancer with small molecule kinase inhibitors, Nature Reviews Cancer 9 (2009) 2839.
20. S. Lapena, A. Giordano, Cell cycle kinase as therapeutic targets for cancer, Nature Reviews Drug Discovery 8 (2009) 547566.
21. A. Levitzki, Tyrosine Kinase Inhibitors: views of selectivity, sensitivity and clinical performance, Annual Review of Pharmacology and Toxicology 53 (2013) 161-185.
22. M. A. El-Moneim, I. M. El-Deen, W. A. El-Fattah, Evaluation of Antioxidant and Antitumor Activities of Some Prepared Nitrogen Heterocycles, Indian journal of applied research 3 (July 2013) 106-110
23. B. S. Dawne, S. N. Kadam, B. M. Shaikh, An efficient synthesis of 1,2,4-triazine derivatives and their in vitro antimicrobial activity, Der Pharmacia Lett. , 2 (2010) 126-131.
24. Z. Schelz, J. Molnar, J. Hohmann, J. Antimicrobial and antiplasmid activities of essential oils, Fitoterapia, 77 (2006) 279 285.
25. National Committee for Clinical Laboratory Standards, Performance standards for antimicrobial susceptibility testing. Informational Supplement M100- S13, $12^{\text {th }}$ Ed, NCCLS; Wayne, P. USA (2003)
26. S.H. Gillespie, Medical Microbiology Illustrated, Butterworth Heinemann Ltd, United Kingdom, (1994) 234-240.
27. P.M. Hawkey, D.A. Lewis, Medical Bacteriology: A Practical Approach, Oxford University Press, USA, (1994) 181-194.
28. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunology Methods, 65 (1983) 55-63.
29. P. Vijayan, C. Raghu, G. Ashok, S. A. Dhanaraj, B. Suresh, Antiviral activity of medicinal plants of Nilgiris, Indian J. Med. Res., 120 (2004) 24 - 29.
